
Faculty of Engineering
Department of Electrical and Electronics Engineering

EE 402 FINAL REPORT

Spring 2025

BATTERY HEALTH AND PERFORMANCE MANAGEMENT

SYSTEM FOR LITHIUM-ION BATTERIES

Submitted by

Seyit Kubilay Uluçay
S029261

Atahan Dikeç
S024983

Supervisor

Dr. Hamza Makhamreh

APPROVAL PAGE

Faculty of Engineering
Department of Electrical and Electronics Engineering

EE 402 FINAL REPORT

Spring 2025
Seyit Kubilay Uluçay

Atahan Dikeç

BATTERY HEALTH AND PERFORMANCE MANAGEMENT
SYSTEM FOR LITHIUM-ION BATTERIES

Jury Members:

Supervisor : Dr. Hamza Makhamreh ______________________

Jury Member 1 : Asst. Prof. Çağatay Edemen ______________________

Jury Member 2 : Asst. Prof. Umut Başaran ______________________

i

ABSTRACT

This report covers the study and early development of a Battery Management System for Lithium-
ion batteries. These batteries are widely used in electric vehicles, renewable energy storage, and
portable electronics because they have high energy density and are efficient. A BMS is very
important to make sure these batteries are safe, reliable, and perform well. This is done by watching
important data like voltage, current, and temperature. The BMS also plays a big part in balancing
the cells to stop problems like too much charging, getting too hot, and losing capacity.
Key methods for guessing the battery’s state, such as Coulomb Counting, Voltage Monitoring, were
looked at. These methods were studied to understand how accurate they are, how complex they are,
and if they work well when conditions change quickly. For cell balancing, both passive and active
methods were compared.
The proposed system design uses an STM32F407 Discovery Board for building the first prototype. It
includes important parts like TMP36GZ temperature sensors for checking temperature, and INA333
amplifiers with shunt resistors for measuring current and capacitor voltages. A custom PCB was
designed to hold these parts. A special control algorithm was developed to manage the active cell
balancing. Simulation results showed that this algorithm works well to balance cells during both
charging and discharging.
While the main ideas of the design have been tested with simulations, the actual hardware has not
yet been fully tested for long periods. This report explains the work done so far, the design of the
BMS, and the good results from simulations. Future work will include more hardware testing and
making the balancing faster.

ii

ACKNOWLEDGMENT

We want to express our great appreciation to Dr. Hamza Makhamreh and Mehmet Karakoç for

their extensive efforts in making this project a success.

iii

TABLE OF CONTENTS

APPROVAL PAGE . i

ABSTRACT . ii

ACKNOWLEDGMENT . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF SYMBOLS AND ABBREVIATIONS . ix

1 INTRODUCTION . 1

2 METHODOLOGY . 2

2.1 Problem Formulation . 2

2.2 Proposed Solution . 2

2.3 Components . 3

2.3.1 Safety Switch . 3

2.3.2 Operational Amplifiers . 4

2.3.3 Capacitor Switches . 5

2.3.4 Temperature Readings . 7

2.3.5 Central Controller . 8

2.3.6 Simulations . 9

2.3.7 Reading Values In Simulation . 11

2.3.8 Control Algorithm . 13

2.3.9 Code Algorithm . 19

2.4 Custom PCB . 23

2.5 Schematic and Pcb . 26

iv

3 RESULTS AND DISCUSSIONS . 36

3.1 Results . 36

3.2 Discussion . 37

4 CONCLUSIONS AND FUTURE WORKS . 38

4.1 Future Works . 38

REFERENCES . 40

APPENDICES . 41

v

LIST OF TABLES

1 Cell Voltages and Imbalance at an Early Discharging Stage 22

2 Cell Voltages and Imbalance at a Later Discharging Stage 22

3 Cell Voltages and Imbalance at an Early Charging Stage 22

4 Cell Voltages and Imbalance at a Later Charging Stage 23

vi

LIST OF FIGURES

1 BD135 photograph in real life [1]. 3

2 BD135 transistor for safety. 4

3 INA333 photograph in real life [2]. 4

4 Amplification at the shunt resistor. 5

5 AQV252G Real life image [3]. 5

6 AQV252G connections. 6

7 TMP36GZ Real image [4]. 7

8 Mounting Holes and Thermistor connections at the schematic. 7

9 STM32F407 Discovery Kit . 8

10 Mathworks 2-Cell Capacitor Based Active Balancing 9

11 Simulation Overview . 10

12 Current reader shunt resistor connection. 11

13 Voltage divider circuit. 12

14 Cell Values of the battery while discharging the system with control algorithm. . . . 21

15 Cell Values of the battery while charging the system with control algorithm. 22

16 Whole schematic of PCB . 25

17 General look of PCB design. 27

18 INA333 Diff. Amplifier connections (Rg = 10M). 28

19 Amplification at the shunt resistor (Rg = 200). 28

20 Mounting Holes and Thermistor connections at the schematic. 29

21 Battery cell connections. 30

22 Voltage divider configurations . 30

23 3D front look of the PCB. 31

24 3D back look of the PCB. 32

25 Printed PCB without any component. 33

26 Front side of the finished PCB. 34

27 Back side of the finished PCB. 35

vii

28 Simulation Overview . 42

viii

LIST OF SYMBOLS AND ABBREVIATIONS

ADC Analog-to-Digital Converter
BMS Battery Management System
C1, C2, C3 Voltage of Balancing Capacitor 1, 2, 3
chargeThreshold Algorithm threshold: minimum voltage difference to start balancing
epsilon Algorithm tolerance: for checking if capacitor is fully charged
I Current
IC Integrated Circuit
KiCad Software Tool
Li-ion Lithium-ion
MATLAB Software Tool
NTC Negative Temperature Coefficient
OpAmp Operational Amplifier
PCB Printed Circuit Board
PWM Pulse Width Modulation
R Resistance
S1 . . . S8 State of Switches 1 through 8 (0 = OFF, 1 = ON)
Simscape MATLAB Toolbox
Simulink Software Tool
SoC State of Charge
SoH State of Health
V Voltage
V1, V2, V3, V4 Voltage of Cell 1, Cell 2, Cell 3, Cell 4
∆V12, ∆V23, ∆V34 Absolute voltage difference between adjacent cells

ix

1 INTRODUCTION

Lithium-ion batteries are very common today. We use them in many things, like phones, electric

cars, and for storing energy from any source. They are popular because they hold a lot of energy

and last a long time. But, Li-ion batteries need careful management. Problems like charging too

much, using too much power, getting too hot, or having cells with different voltage levels can be

dangerous and make the battery age faster. To handle these problems, we need a good Battery

Management System. A BMS watches important things like voltage, current, and temperature. It

also helps estimate the battery’s condition and protects the battery pack.

Our project is about building a BMS for Li-ion batteries. In the EE401 report, we researched BMS

topics. We learned about how to estimate the battery state and different ways to balance the cells.

Now, in this report, we are explaining the steps in the building phase of the BMS system.

The main goal of the project is to make a working BMS prototype. Our main tasks are:

• Build the Hardware: Design and make a custom circuit board (PCB). Put the STM32F407

Discovery Board, sensors, and balancing parts on it.

• Make the Balancing System: Build the active balancing circuit using capacitors and special

switches.

• Write the Code: Program the STM32F407 board. This includes writing the code for the

Control Algorithm that controls the balancing switches using sensor readings.

• Test Everything: Put all the parts together and test if the BMS works correctly. We need to

check if it measures things accurately and balances the cells.

• Plan is to use the STM32F407 discovery board first. Capacitor based balancing circuit will be

built. The control code will be written based on our MATLAB simulations.

1

2 METHODOLOGY

This section explains the steps taken and the tools used to build the BMS. Overall work involves

designing hardware, creating a control mechanism, and testing the system.

2.1 Problem Formulation

The main problem is managing Li-ion batteries correctly. Li-ion batteries are used everywhere, but

they can be risky if not handled properly. If they are charged too much, used too much, got too hot,

or if the different cells inside the battery pack have uneven voltages, the battery can get damaged.

This damage reduces the battery’s life and can even lead to dangerous situations like fires. Standard

battery systems might not handle these issues well. So, the engineering problem is to create a

reliable system that prevents these dangers and helps the battery work better and last longer.

2.2 Proposed Solution

To solve the problems mentioned before, the proposed solution is to build a custom BMS. This

system is designed to manage a battery pack of four Li-ion cells connected in series. The main goal

of our BMS is to monitor the battery pack continuously to prevent the occurrence of overcurrent,

overcharge, or overheating problems while performing active cell balancing to keep all cells at

similar voltage levels. All of the controls and management will be held in the STM32 board, so the

proposed system will be able to be configured as required or desired.

To make the voltage differences between each cell smaller, energy will be moved between cells

using capacitors. Capacitors are small, so they will need to make the voltage differences smaller

over many cycles. So, the capacitors will charge and then discharge many times to move the charge.

For capacitor-based active balancing, a common way to control charging and discharging is by using

switches. These switches connect the capacitor to either the higher voltage cell for charging or the

lower voltage cell for discharging. This control is mostly done using two PWM signals. One PWM

signal has its timing shifted, starting halfway through the period of the other signal to manage the

charge and discharge steps. This approach is used by MathWorks as a Simulink example [5]

2

However, this report proposes a different approach to the switch control problem by creating an

algorithm to control switches of the capacitor, which takes cell and capacitor voltages as inputs and

controls the switches while maintaining the state of batteries in a stable state.

2.3 Components

The proposed BMS has several key parts working together.

2.3.1 Safety Switch

BD135: The BD135 NPN transistor, shown in the figure 1 was chosen for its reliability and sufficient

current-handling capability in low-side switching applications.

Figure 1: BD135 photograph in real life [1].

It is used in the circuit for grounding control in a battery protection mechanism as shown in the

figure 2. This transistor is controlling the path between main negative and ground, particularly

useful in hardware-based disconnection of the system’s negative line under fault conditions.

3

Figure 2: BD135 transistor for safety.

2.3.2 Operational Amplifiers

The INA333 instrumentation amplifier, shown in the figure 3, was utilized for its high common-mode

rejection ratio and low offset voltage, making it ideal for accurate differential voltage measurements

across a shunt resistor to calculate battery current and capacitor voltages.

Figure 3: INA333 photograph in real life [2].

In the figure 4 configuration of the current reading system configuration based on the INA333

OpAmp.

4

Figure 4: Amplification at the shunt resistor.

2.3.3 Capacitor Switches

AQV252G: The AQV252G Photomos solid-state relay transistor, shown in the figure 5, was chosen

due to its low on-resistance, high isolation voltage, and compact form, making it suitable for safe

and efficient switching in battery protection systems.

Figure 5: AQV252G Real life image [3].

5

System configuration of the AQV252G Photomos in the PCB is shown in the figure 6.

Figure 6: AQV252G connections.

The AQV252G photomos is supplied energy from the pin 1 and connected to GND from the pin 2,

this connection runs the photomos, with providing energy to photomos it is possible to turn on or

off the photomos, which controls the connection between pins 6 and 4 as shown in the figure 6.

6

2.3.4 Temperature Readings

The temperature of the battery cells is an important factor for safety and performance. In this system,

Negative Temperature Coefficient NTC thermistors (specifically TMP36GZ model as shown in the

figure 7) are planned to be used for reading cell temperatures.

Figure 7: TMP36GZ Real image [4].

These NTC thermistors will be directly connected to analog input pins on the STM32 board. The

STM32 will then convert the analog voltage readings from the thermistors into temperature values.

This information will be used by the BMS to monitor for overheating or overcooling conditions,

helping to keep the battery operating within safe temperature limits. The connections for two

thermistors, Thermistor1 and Thermistor2, are shown in the schematic in Figure 8.

Figure 8: Mounting Holes and Thermistor connections at the schematic.

7

2.3.5 Central Controller

The main control unit is an STM32F407 Discovery Board, which is shown in the figure 9. This

board reads all the sensor data, runs the control algorithm, and decides when and how to balance

the cells.

The STM32F407G Discovery board was selected for its high-performance, wide range of periph-

erals, and lots of ADC channels, which are critical for handling simultaneous voltage, temperature,

and current measurements in real-time. Specific pin connections on the STM32F407G boards were

made based on signal requirements and ADC channel availability. CellVoltage1 through CellVolt-

age4 were connected to analog-capable pins on U1 to allow direct measurement of individual cell

voltages via the internal ADCs. The BD135 transistor control line is assigned to a GPIO pin to allow

digital control over external switching elements such as transistors. On U2, the Thermistor1 signal

and Thermistor2 signal inputs are connected to analog-capable pins to monitor battery temperature

for safety and thermal management. Voltage Reader 1, 2, and 3 are also connected to analog inputs

to enable voltage sensing at various points in the battery pack. The SHUNT signal is routed to

an analog input as well, as it represents the differential voltage drop across a shunt resistor used

for current measurement. Switches S1 to S8 are assigned to general GPIO pins with interrupt

capability to provide manual or logic-based interaction with the system. This pin configuration

ensures optimal use of the microcontroller’s resources, balancing analog input needs with digital

control and user interaction requirements.

Figure 9: STM32F407 Discovery Kit

8

2.3.6 Simulations

Before designing the hardware, we performed simulations to test ideas we had planned earlier,

especially the active balancing control algorithm. The idea for the simulation approach was initially

based on an example found on the MathWorks website, called "Balance Battery Cells with Switched

Capacitor Method" as shown in the figure 10. This example, built using Simscape Battery, showed

how capacitor-based active balancing could be modeled and simulated in Simulink [5].

Figure 10: Mathworks 2-Cell Capacitor Based Active Balancing

Mathworks example was a great starting point because it provided a 2-cell example for capacitor-

based active balancing. However, some changes were needed for our specific project.

• Number of Cells: The example used only two cells. Our project requires managing four cells,

so the simulation model was expanded to include four battery cell blocks connected in series.

• Control Method: The original MathWorks example controlled the balancing switches using

simple PWM signals. For our BMS, a more intelligent control method is needed. Therefore,

the PWM control was replaced with our custom ControlAlgorithm, which makes decisions

based on real-time voltage measurements from the cells and capacitors.

We designed MATLAB/Simulink to build a model of our 4-cell battery pack and the capacitor-based

balancing circuit with Simscape toolbox as shown in the figure 11.

9

Fi
gu

re
11

:S
im

ul
at

io
n

O
ve

rv
ie

w

10

In our simulation model:

• Battery components are representing the Panasonic NCR18650BD cells, which are planned

for use in the hardware, were choosen.

• The 4 cells were set up with different starting SoC levels (like 100%, 90%, 80%, and 70%) so

that an imbalance was created for the BMS to fix.

• The balancing circuit, including three capacitors set to 500 microfarads based on tests and the

eight switches, was included in the model.

• The ControlAlgorithm logic was implemented to control the switches based on the simulated

cell and capacitor voltages.

2.3.7 Reading Values In Simulation

In the simulation current passing through the load, individual cell voltages, capacitor voltages are

getting red by the STM32 board.

Reading Current The current passing through the load is also passing through shunt resistor as

shown in the figure 12 and the shunt resistor has small amount of resistance in it, for example 0.1Ω.

But still this resistance causes small amount of voltage drop across the shunt resistor. This voltage

drop is after amplified by INA333 OpAmp with 500 times and this signal is sent to STM32 board.

Since the resistance value is so small inside the shunt resistor, the voltage drop across the resistor is

can be closely estimated as current passing through the resistor because of the Ohms’ law V = I ∗R,

when R value is too low, it can be negligible and we can assume V = I in this case.

Figure 12: Current reader shunt resistor connection.

11

Reading Voltages The individual cell voltages are can be directly read by ADC of the STM32 board,

however 4.2 volts are the max limit of the Li-ion cells so they can be exceed the 3.3V limit of the

ADC of STM32 board and damage the board. So one of the most basic solution to read voltages

are using voltage dividers as shown in the figure 13 and then map these values inside the STM32

board to correct values.

Figure 13: Voltage divider circuit.

The capacitor voltages are also now read by INA333 OpAmps for control purposes. Moreover,

the temperature value of the cells will be read with TMP36GZ NTC thermistors and they will be

directly connected to STM32 board.

12

2.3.8 Control Algorithm

The ControlAlgorithm shown in below, developed in MATLAB/Simulink, Control Algorithm is

created inside the function block which is actually representing the behaviour of the STM32 board

with data values and controls the balancing switches. At the Listing 1 The function takes the

voltages of the four cells V1 to V4 and the three balancing capacitors C1, C2 and C3 as inputs. It

outputs the control signals 0 for OFF, 1 for ON for the eight switches S1 to S8.

This MATLAB function implements a control algorithm for active cell balancing in a BMS, targeting

voltage equalization across multiple cells. The function takes four cell voltage inputs (v1 through

v4) and three capacitor voltages (c1 through c3) used for charge transfer between cells. It outputs

eight control signals (S1 to S8) which likely correspond to switch states in the balancing circuit.

A set of persistent variables (balancingCap, pulsesRemaining, toggleState, Nval) is used to retain

the system’s state across function calls which set on the Listing 1. These variables help ensure

continuity in the balancing process. Initially, the algorithm sets up the state to indicate that no

capacitor is actively balancing (balancingCap = 0) and no toggling is ongoing. toggleState manages

whether the balancing capacitor is in a charging or discharging phase. The N_val parameter defines

how many full toggling cycles (charge/discharge) are performed before the system re-evaluates the

voltage differences and balancing status.

The constants THRESHOLD_TO_PICK_NEW_PAIR and TARGET_DV_FOR_ACTIVE_PAIR

define the criteria for initiating new balancing actions and terminating current ones. Specifically, a

new cell pair will be selected for balancing if their voltage difference exceeds a threshold (10 mV),

and balancing on the current pair will persist until the voltage difference is reduced to a desired

target (10 mV). The algorithm is designed to perform persistent balancing, meaning it does not

switch cell pairs too frequently, which could lead to instability or inefficiency.

Overall, the function provides a systematic approach to dynamic and state-aware active balancing,

preserving both charge uniformity and operational efficiency in the battery pack.

13

1

2 function [S1,S2,S3,S4,S5,S6,S7,S8] = ControlAlgorithm(v1,v2,v3,v4, c1, c2, c3)

3 % ControlAlgorithm.m (Modified for persistent balancing until target)

4

5 persistent balancingCap pulsesRemaining toggleState N_val

6 if isempty(balancingCap)

7 balancingCap = 0; % 0=no active cap, 1=C1, 2=C2, 3=C3

8 pulsesRemaining = 0; % h a l f strokes left

9 toggleState = 0; % 0=charge, 1=discharge

10 N_val = 10; % Number of full pulses per "commitment" before checking

pulsesRemaining

11 end

12

13 % --- Algorithm Constants ---

14 THRESHOLD_TO_PICK_NEW_PAIR = 0.010; % (10mV) Min difference to initiate balancing on a

NEW pair.

15 TARGET_DV_FOR_ACTIVE_PAIR = 0.010; % (10mV) Balance the active pair until its |dV| is

<= this value.

Listing 1: MATLAB Control Algorithm Part 1.

This part which is shown in Listing 2 reconstructs individual cell voltages from cumulative voltage

measurements. Each Vcell is calculated by subtracting the scaled contribution of previous cells,

using calibration constants likely based on voltage dividers or ADC scaling. This enables accurate

monitoring of each cell individually in the series-connected battery pack.

1 %--- 1. Reconstruct the actual cell voltages ---

2 Vcell1 = 1.40 * v1;

3 Vcell2 = 2.80 * v2 - 1.40 * v1;

4 Vcell3 = 4.20 * v3 - 2.80 * v2;

5 Vcell4 = 5.50 * v4 - 4.20 * v3;

Listing 2: MATLAB Control Algorithm Part 2.

This section at the Listing 3 calculates the voltage differences between adjacent cells to identify

imbalance. It then takes the absolute values of these differences to evaluate the magnitude of

imbalance regardless of polarity. These values are used to determine whether balancing is needed

between any pair of cells.

14

1 %--- 2. Compute a d j a c e n t cell differences ---

2 dV12 = Vcell2 - Vcell1;

3 dV23 = Vcell3 - Vcell2;

4 dV34 = Vcell4 - Vcell3;

5 abs_dV12 = abs(dV12);

6 abs_dV23 = abs(dV23);

7 abs_dV34 = abs(dV34);

Listing 3: MATLAB Control Algorithm Part 3.

This section in Listing 4 defines the decision-making logic for initiating and continuing the balancing

process. It starts by checking whether a capacitor is currently active. If so, it evaluates whether the

voltage difference in the corresponding cell pair has fallen below the target threshold. If the target

is met, balancing for that pair stops. Otherwise, if the pulse count (pulsesRemaining) has expired,

it is reset to continue balancing.

If no capacitor is currently active, the algorithm compares all adjacent cell voltage differences and

selects the pair with the maximum imbalance, provided it exceeds a predefined threshold. That

pair is then assigned for balancing with a fresh pulse quota, and the system is reset to begin a new

balancing cycle. This approach ensures efficient and persistent balancing only when necessary.

1

2 %--- 3. Decision Logic ---

3 S_internal = zeros(1,8);

4 % Part A: Check if an already active capacitor has met its target

5 if balancingCap ~= 0

6 current_active_dV_abs = 0;

7 if balancingCap == 1

8 current_active_dV_abs = abs_dV12;

9 elseif balancingCap == 2

10 current_active_dV_abs = abs_dV23;

11 elseif balancingCap == 3

12 current_active_dV_abs = abs_dV34;

13 end

14

15 if current_active_dV_abs <= TARGET_DV_FOR_ACTIVE_PAIR

16 % This active pair has reached its target. Stop balancing it.

17 balancingCap = 0; % This will trigger picking a new pair in Part B.

18 pulsesRemaining = 0; % Ensure no more pulses for this now-stopped cap.

15

19 else

20 % Active pair still needs balancing (its |dV| > TARGET_DV_FOR_ACTIVE_PAIR).

21 % If its pulse quota for the current N_val commitment ran out, renew it.

22 if pulsesRemaining == 0

23 pulsesRemaining = 2 * N_val;

24 end

25 % It will proceed to execute a pulse in Step 4.

26 end

27 end

28

29 % Part B: If no capacitor is active (either initially , or previous one met its target)

30 if balancingCap == 0

31 all_abs_dVs = [abs_dV12 , abs_dV23 , abs_dV34];

32 [maxDV_overall , idx] = max(all_abs_dVs);

33

34 if maxDV_overall > THRESHOLD_TO_PICK_NEW_PAIR

35 % A pair is found that needs balancing.

36 balancingCap = idx; % 1, 2, or 3

37 pulsesRemaining = 2 * N_val; % Give it a fresh set of pulses

38 toggleState = 0; % Always start a new balancing sequence with a "

charge" stroke

39 else

40 % No pair meets the criteria to START balancing. All are balanced enough.

41 balancingCap = 0; % Ensure it’s off

42 pulsesRemaining = 0;

43 end

44 end

Listing 4: MATLAB Control Algorithm Part 4.

This part of the code that is shown in the Listing 5 handles the execution of one half-cycle (charge

or discharge) of the active balancing operation using capacitor-based charge shuttling. Depending

on the selected cell pair (balancingCap), the algorithm compares the voltage difference to determine

the direction of charge transfer. It then activates the appropriate switches (S_internal entries) to

either charge the balancing capacitor from the higher-voltage cell or discharge it to the lower-voltage

cell.

The switching alternates between charge and discharge phases by toggling toggleState on each call,

while pulsesRemaining tracks how many half-cycles are left. If no balancing is currently active,

16

all switch signals remain off. This structure ensures controlled, directional energy transfer between

imbalanced cells.

1

2 %--- 4. If a cap is active, execute one h a l f stroke ---

3 if balancingCap ~= 0 % A cap is selected and should be active

4 if balancingCap == 1

5 if dV12 > 0 % Cell2 > Cell1 shuttle from C 2 C1

6 if toggleState == 0; S_internal(2) = 1; S_internal(4) = 1; % Charge C1 from

Cell2 (via S2, S4)

7 else; S_internal(1) = 1; S_internal(3) = 1; % Discharge C1

to Cell1 (via S1, S3)

8 end

9 else % Cell1 > Cell2 shuttle from C 1 C2

10 if toggleState == 0; S_internal(1) = 1; S_internal(3) = 1; % Charge C1 from

Cell1

11 else; S_internal(2) = 1; S_internal(4) = 1; % Discharge C1

to Cell2

12 end

13 end

14 elseif balancingCap == 2

15 if dV23 > 0 % Cell3 > Cell2 shuttle C 3 C2

16 if toggleState == 0; S_internal(4) = 1; S_internal(6) = 1;

17 else; S_internal(3) = 1; S_internal(5) = 1;

18 end

19 else % Cell2 > Cell3 shuttle C 2 C3

20 if toggleState == 0; S_internal(3) = 1; S_internal(5) = 1;

21 else; S_internal(4) = 1; S_internal(6) = 1;

22 end

23 end

24 elseif balancingCap == 3

25 if dV34 > 0 % Cell4 > Cell3 shuttle C 4 C3

26 if toggleState == 0; S_internal(6) = 1; S_internal(8) = 1;

27 else; S_internal(5) = 1; S_internal(7) = 1;

28 end

29 else % Cell3 > Cell4 shuttle C 3 C4

30 if toggleState == 0; S_internal(5) = 1; S_internal(7) = 1;

31 else; S_internal(6) = 1; S_internal(8) = 1;

32 end

33 end

17

34 end

35

36 pulsesRemaining = pulsesRemaining - 1;

37 toggleState = 1 - toggleState;

38 else

39 % No balancing action this cycle, S_internal remains all zeros.

40 end

Listing 5: MATLAB Control Algorithm Part 5.

This part of the code in the Listing 6 segment is specifically designed to prevent short-circuit

conditions. It operates on a state vector S (representing switch/contactor states) by sequentially

applying six "no-short" rules. Each rule, implemented using conditional if statements (for example,

S(8) && S(6)), checks for specific concurrent switch activations that could lead to a short. If such a

hazardous combination is detected, the algorithm proactively deactivates (sets to 0) other designated

switches within the S vector. The explicitly enforced order of these rule evaluations is critical for

ensuring deterministic fault prevention and maintaining the electrical safety of the battery system.

1 %--- 5. Enforce the six n o short rules, in exactly this order (on S_internal)

2 S = S_internal;

3 if (S(8) && S(6)); S(7) = 0; S(5) = 0; end

4 if (S(7) && S(5)); S(8) = 0; S(6) = 0; S(4) = 0; S(2) = 0; end

5 if (S(6) && S(4)); S(8) = 0; S(7) = 0; S(5) = 0; S(3) = 0; S(2) = 0; S(1) = 0; end

6 if (S(5) && S(3)); S(8) = 0; S(7) = 0; S(6) = 0; S(4) = 0; S(2) = 0; S(1) = 0; end

7 if (S(4) && S(2)); S(7) = 0; S(5) = 0; S(3) = 0; S(1) = 0; end

8 if (S(3) && S(1)); S(4) = 0; S(2) = 0; end

Listing 6: MATLAB Control Algorithm Part 6.

This part of the code segment at the Listing 7 is the final step. It takes a list of switch commands,

which is stored inside a variable called S. The code then separates each command from this list and

gives it its own name, from S1 up to S8. For example, the first command in the S list becomes S1,

the second command becomes S2, and so on. These individual S1 to S8 variables are the final ’on’

or ’off’ signals for each of the eight switches. This makes it easy to use these signals to control the

actual switches in the hardware, or to send this information to other parts of the system, or just to

see what the final decision for each switch is.

18

1 %--- 6. Unpack S back into the eight outputs ---

2 S1 = S(1); S2 = S(2); S3 = S(3); S4 = S(4);

3 S5 = S(5); S6 = S(6); S7 = S(7); S8 = S(8);

4

5 end

Listing 7: MATLAB Control Algorithm Part 7.

2.3.9 Code Algorithm

The MATLAB-based Control Algorithm, detailed in Listings 1 through 7, manages the active cell

balancing process. Its operation is based on several key steps that are executed repeatedly:

1. State Retention and Initialization (Listing 1): Variables are used to remember the balancing

state between function calls. These include:

• balancingCap: This shows which capacitor (C1, C2, or C3) is currently active. A value

of 0 means no capacitor is active.

• pulsesRemaining: This counts how many more charge or discharge actions (half-

strokes) are left for the currently active capacitor before its status is checked again.

• toggleState: This decides if the active capacitor should next charge (0) or discharge

(1).

• N_val: This sets how many full charge/discharge cycles are done by an active capacitor

before the system checks if it should continue with that same capacitor or look for a new

cell pair to balance.

Two main voltage difference levels are also set: THRESHOLD_TO_PICK_NEW_PAIR (10 mV) is

the minimum difference needed to start balancing a new pair of cells. TARGET_DV_FOR_ACTIVE_PAIR

(10 mV) is the level to which the voltage difference of an already active pair should be reduced.

2. Cell Voltage Calculation (Listing 2): The actual voltage of each individual cell (Vcell1,

Vcell2, Vcell3, Vcell4) is calculated. This is done using the input voltage readings (v1, v2, v3,

v4), which are likely from voltage dividers measuring sums of cell voltages. Specific constants

(1.40, 2.80, etc.) are used to find each cell’s true voltage.

19

3. Voltage Difference Calculation (Listing 3): The voltage differences between cells that are

next to each other (dV12, dV23, dV34) are found. The absolute (positive) values of these

differences are also calculated to see how big the imbalance is.

4. Balancing Decision Making (Listing 4): This part decides if balancing is needed and which

cells to balance.

• If a capacitor is already balancing a pair of cells: The voltage difference of this active pair

is checked. If this difference is now less than or equal to TARGET_DV_FOR_ACTIVE_PAIR,

balancing for this pair is stopped. The system will then look for a new pair. If the target

is not met but the pulsesRemaining for this capacitor has reached zero, it means the

capacitor has completed its set number of actions. So, pulsesRemaining is reset to

allow it to continue balancing the same pair.

• If no capacitor is currently balancing: The voltage differences of all cell pairs are com-

pared. The pair with the largest difference is chosen. If this largest difference is greater than

THRESHOLD_TO_PICK_NEW_PAIR, that pair is selected for balancing. The balancingCap

variable is set to the chosen capacitor, pulsesRemaining is set for a new set of actions,

and toggleState is set to start with charging the capacitor. If no pair has a big enough

difference, no balancing is started.

5. Executing a Balancing Action (Listing 5): If a capacitor is chosen for balancing and

pulsesRemaining is greater than zero, one balancing action (a half-stroke) is performed.

• The direction of energy transfer is decided by looking at the voltage difference of the

chosen cell pair (e.g., dV12).

• If toggleState is 0 (charge phase): The correct switches (S1 to S8, stored inS_internal)

are turned on to charge the capacitor from the cell with the higher voltage.

• If toggleState is 1 (discharge phase): The switches are set to discharge the capacitor

into the cell with the lower voltage.

• After the action, pulsesRemaining is reduced by one, and toggleState is flipped for

the next action.

If no balancing is active, all switch commands in S_internal are kept off.

20

6. Preventing Short Circuits (Listing 6): A set of six rules is applied in a specific order. These

rules check the planned switch commands (S_internal) to make sure no combination of ON

switches would cause a short circuit in the battery system. If a risky combination is found,

some switches are forced OFF to prevent the short.

7. Setting Final Switch Outputs (Listing 7): The final, safe switch commands from the internal

list S are given to the output variables S1 through S8. These outputs are then used to control

the actual hardware switches.

Until the ideal control algorithm is found, the algorithm has changed over 10 times from scratch.

However, Matlab simulation with control algorithm run with different states and showed good

performance, the most important two states are charging as shown in the figure 15 and discharging

14.

Figure 14: Cell Values of the battery while discharging the system with control algorithm.

The simulations showed that the Control Algorithm works as expected. When the simulated started

with unbalanced cells as shown in the table 1, the algorithm detected the voltage differences. It then

correctly turned the switches ON and OFF to charge and discharge the capacitors, moving energy

between the cells. As the simulation ran, the voltage differences between the cells and the total

imbalance between cells got smaller, as you can see in the table 2.

21

Table 1: Cell Voltages and Imbalance at an Early Discharging Stage

Time (s) Cell 4 (V) Cell 3 (V) Cell 2 (V) Cell 1 (V) Sum of |∆V | (mV)
0 4.101479 3.993070 3.880436 3.795459 306.02
5 4.101420 3.956361 3.880530 3.795401 306.02
10 4.101377 3.956205 3.880623 3.795330 306.05
15 4.101335 3.956049 3.880716 3.795259 306.08
20 4.101292 3.955894 3.880809 3.795188 306.10

Table 2: Cell Voltages and Imbalance at a Later Discharging Stage

Time (s) Cell 4 (V) Cell 3 (V) Cell 2 (V) Cell 1 (V) Sum of |∆V | (mV)
33390 3.665379 3.646941 3.598976 3.538581 126.80
33395 3.665329 3.646936 3.598937 3.538545 126.78
33400 3.665279 3.646930 3.598897 3.538510 126.77
33405 3.665229 3.646924 3.598858 3.538474 126.76
33410 3.665179 3.646919 3.598819 3.538438 126.74

Figure 15: Cell Values of the battery while charging the system with control algorithm.

Then the same data and simulation run again but the major difference was now the cells were getting

charged up with constant current while the balancing algorithm was running in the background.

Table 3: Cell Voltages and Imbalance at an Early Charging Stage

Time (s) Cell 4 (V) Cell 3 (V) Cell 2 (V) Cell 1 (V) Sum of |∆V | (mV)
0 4.109786 4.004540 3.891349 3.806844 302.94
5 4.109793 3.967767 3.891535 3.806884 302.91
10 4.109793 3.967728 3.891721 3.806911 302.88
15 4.109793 3.967689 3.891907 3.806938 302.86
20 4.109793 3.967651 3.892092 3.806965 302.83

22

Table 4: Cell Voltages and Imbalance at a Later Charging Stage

Time (s) Cell 4 (V) Cell 3 (V) Cell 2 (V) Cell 1 (V) Sum of |∆V | (mV)
27040 4.109666 4.108565 4.107561 4.106739 2.93
27045 4.109666 4.108565 4.107561 4.106739 2.93
27050 4.109666 4.108565 4.107561 4.106739 2.93
27055 4.109666 4.108565 4.107561 4.106739 2.93
27060 4.109666 4.108565 4.107561 4.106739 2.93

Table 3 displays cell voltages at an early phase of the charging and balancing process. The sum of

absolute voltage differences,
∑

|∆V |, starts at 302.94 mV and shows a slight decrease to 302.83 mV.

This indicates that the balancing algorithm is beginning to address the initial, relatively large im-

balance.

Significantly, Table 4, which records data much later in the charging process (around 27040 sec-

onds), reveals that the
∑

|∆V | has been dramatically reduced to a constant 2.93 mV. The individual

cell voltages are very close to each other.

Results confirmed that the capacitor-based balancing approach and our control logic could effectively

balance the cells and reduces the voltage difference in both charging and discharging states. This

gave us confidence to proceed with the hardware design based on this simulated system.

2.4 Custom PCB

We designed a custom PCB using KiCad to connect all the parts of our BMS together in one place,

as shown in the figure 16. This board acts as a motherboard.

The main component mounted on this PCB is the STM32F407 Discovery Board (labeled U1A and

U1B in the schematic). The PCB routes connections between the STM32 board and all other parts

of the system:

• Battery Connections: The PCB has points to connect the four Li-ion battery cells (BT1+ to

BT4+ shown on schematic).

• Sensor Integration: All the sensor circuits are built onto the PCB. This includes the voltage

reading circuits which using INA333 amplifiers U6-U8 for each capacitor is connected ports

PC0, PC2 and PA2, the current sensing circuit shunt resistor and INA333 amplifier U5 is

23

connected port PA0, and the connections for the NTC thermistors are connected to PE7 and

PE9.

• Balancing Circuit Integration: The active balancing circuit, including the eight AQV252G

photomos switches K1-K8 are connected to ports PA6, PA4, PD0, PD2, PE3, PE5, PD8 and

PD15.

• Power Distribution: The PCB also distributes the necessary power 3.3V and Ground to all

required components.

24

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

A B C D E F

A B C D E F

D
at

e:
K

iC
ad

E
.D

.A
.

9.
0.

1
R

ev
:

S
iz

e:
A

3
Id

:
1/

1

T
it

le
:

F
ile

:
D

E
N

E
M

E
.k

ic
ad

_s
ch

S
he

et
:

/

R
7

40

G
N

D

G
N

D

R
6

10
0

R
26

10
k

C
13

0.
1u

F

R
3

32
0

R
19

22
0

G
N

DR
18

22
0

12

654

K
3

A
Q

V
25

4R

+
3

R
g

1

R
g

8

-
2

V+
7

V-
4

Ref
5

6

U
10

IN
A

33
3x

xD
G

K

3

2 1

Q
1

B
D

13
5

R
12

82
0

R
1

45
0

12

654

K
1

A
Q

V
25

4R

G
N

D

12

654

K
2

A
Q

V
25

4R

+
3

R
g

1

R
g

8

-
2

V+
7

V-
4

Ref
5

6

U
9

IN
A

33
3x

xD
G

K

G
N

D

B
T

4
B

at
te

ry
_C

el
l

G
N

D

G
N

D

G
N

D

G
N

DR
22

22
0

G
N

D
12

654

K
8

A
Q

V
25

4R

R
4

10
0

R
10 0.
1

G
N

D

R
2

10
0

C
2

50
0u

F

P
W

R
_F

LA
G

B
T

1
B

at
te

ry
_C

el
l

B
T

2
B

at
te

ry
_C

el
l

R
8

10
0

R
30

10
k

G
N

D

B
T

3
B

at
te

ry
_C

el
l

R
21

22
0

G
N

D

G
N

D

C
3

50
0u

F

G
N

D
_P

1_
1

P
1_

1

V
D

D
_P

1_
3

P
1_

3

G
N

D
_P

1_
5

P
1_

5

P
C

1
P

1_
7

P
C

3
P

1_
9

P
A

1
P

1_
11

P
A

3
P

1_
13

P
A

5
P

1_
15

P
A

7
P

1_
17

P
C

5
P

1_
19

P
B

1
P

1_
21

G
N

D
_P

1_
23

P
1_

23

P
E

7
P

1_
25

P
E

9
P

1_
27

P
E

11
P

1_
29

P
E

13
P

1_
31

P
E

15
P

1_
33

P
B

11
P

1_
35

P
B

13
P

1_
37

P
B

15
P

1_
39

P
D

9
P

1_
41

P
D

11
P

1_
43

P
D

13
P

1_
45

P
D

15
P

1_
47

G
N

D
_P

1_
49

P
1_

49

G
N

D
_P

1_
2

P
1_

2

V
D

D
_P

1_
4

P
1_

4

~
{R

S
T

}P
1_

6

P
C

0
P

1_
8

P
C

2
P

1_
10

P
A

0
P

1_
12

P
A

2
P

1_
14

P
A

4
P

1_
16

P
A

6
P

1_
18

P
C

4
P

1_
20

P
B

0
P

1_
22

P
B

2
P

1_
24

P
E

8
P

1_
26

P
E

10
P

1_
28

P
E

12
P

1_
30

P
E

14
P

1_
32

P
B

10
P

1_
34

P
B

12
P

1_
36

P
B

14
P

1_
38

P
D

8
P

1_
40

P
D

10
P

1_
42

P
D

12
P

1_
44

P
D

14
P

1_
46

N
C

P
1_

48

G
N

D
_P

1_
50

P
1_

50

U
1A

S
T

M
32

F
40

7G
-D

IS
C

1

G
N

D

R
_L

oa
d1

25
0

C
4

0.
1u

F

R
15

22
0

R28
10M

R
16

22
0

12

654

K
5

A
Q

V
25

4R

G
N

D

+
3

R
g

1

R
g

8

-
2

V+
7

V-
4

Ref
5

6

U
8

IN
A

33
3x

xD
G

K

P
W

R
_F

LA
G

R
29

10
k

+
3

R
g

1

R
g

8

-
2

V+
7

V-
4

Ref
5

6

U
5

IN
A

33
3x

xD
G

K

12

654

K
6

A
Q

V
25

4R

G
N

D

P
W

R
_F

LA
G

G
N

D

R
27

10
k

C
11

0.
1u

F

G
N

D

R11
200

C
1

50
0u

F

R
20

22
0

R
17

22
0

12

654

K
7

A
Q

V
25

4R

12345

J1C
on

n_
01

x0
5

R
5

18
0

H
4

M
ou

nt
in

gH
ol

e

H
2

M
ou

nt
in

gH
ol

e

H
3

M
ou

nt
in

gH
ol

e

H
1

M
ou

nt
in

gH
ol

e P
W

R
_F

LA
G

G
N

D

12

654

K
4

A
Q

V
25

4R

R14
10M

1 2 3

J4 C
on

n_
01

x0
3_

S
oc

ke
t

R
23

10
k

1 2 3

J5 C
on

n_
01

x0
3_

S
oc

ke
t

G
N

D

C
12

0.
1u

F

G
N

D

G
N

D
_P

2_
1

P
2_

1

5V
_P

2_
3

P
2_

3

3V
_P

2_
5

P
2_

5

P
H

0
P

2_
7

P
C

14
P

2_
9

P
E

6
P

2_
11

P
E

4
P

2_
13

P
E

2
P

2_
15

P
E

0
P

2_
17

P
B

8
P

2_
19

B
O

O
T

0
P

2_
21

P
B

6
P

2_
23

P
B

4
P

2_
25

P
D

7
P

2_
27

P
D

5
P

2_
29

P
D

3
P

2_
31

P
D

1
P

2_
33

P
C

12
P

2_
35

P
C

10
P

2_
37

P
A

14
P

2_
39

P
A

10
P

2_
41

P
A

8
P

2_
43

P
C

8
P

2_
45

P
C

6
P

2_
47

G
N

D
_P

2_
49

P
2_

49

G
N

D
_P

2_
2

P
2_

2

5V
_P

2_
4

P
2_

4

3V
_P

2_
6

P
2_

6

P
H

1
P

2_
8

P
C

15
P

2_
10

P
C

13
P

2_
12

P
E

5
P

2_
14

P
E

3
P

2_
16

P
E

1
P

2_
18

P
B

9
P

2_
20

V
D

D
_P

2_
22

P
2_

22

P
B

7
P

2_
24

P
B

5
P

2_
26

P
B

3
P

2_
28

P
D

6
P

2_
30

P
D

4
P

2_
32

P
D

2
P

2_
34

P
D

0
P

2_
36

P
C

11
P

2_
38

P
A

15
P

2_
40

P
A

13
P

2_
42

P
A

9
P

2_
44

P
C

9
P

2_
46

P
C

7
P

2_
48

G
N

D
_P

2_
50

P
2_

50

U
1B

S
T

M
32

F
40

7G
-D

IS
C

1

R
24

10
k

R25
10M

G
N

D

C
el

l2
O

ut
pu

t

S
1

CellVoltage2CellVoltage3

C
el

l3
O

ut
pu

t

G
N

D

CellVoltage1

MainNegative

m
os

fe
t

V
ol

ta
ge

R
ea

de
r

3

V
ol

ta
ge

R
ea

de
r

2

C
el

l4
O

ut
pu

t

C
el

l1
O

ut
pu

t

V
ol

ta
ge

R
ea

de
r

1

CellVoltage4

M
ai

n
P

os
iti

ve

MainNegative

C
ap

3
-

C
ap

3
+

S
7

C
ap

1
+

C
ap

1
-

S
8

3.
3V

C
ap

1
-

C
ap

1
+

C
el

lV
ol

ta
ge

4
C

el
lV

ol
ta

ge
1

C
el

lV
ol

ta
ge

2

C
el

lV
ol

ta
ge

3

m
os

fe
t

C
ap

3
+

3.3V

S
8

C
ap

3
-

3.3V

S
7

S
H

U
N

T

C
ap

2
-

S
2

S
6

T
he

rm
is

to
r1

3.3V

3.
3V

S
3

3.
3V

S
6

S
5

S
H

U
N

T

T
he

rm
is

to
r2

+

V
ol

ta
ge

R
ea

de
r

2
V

ol
ta

ge
R

ea
de

r
1

S
2

V
ol

ta
ge

R
ea

de
r

3

S
3

S
4

C
ap

2
+

C
ap

2
+

3.3V

S
4

C
ap

2
-

T
he

rm
is

to
r1

+
3.

3V

S
1

S
5

G
N

D

T
he

rm
is

to
r2

+

T
he

rm
is

to
r2

(s
gn

l)

T
he

rm
is

to
r1

+

T
he

rm
is

to
r1

(s
gn

l) G
N

D
Cell1Output

MainPositive

Cell4Output

Cell3Output

Cell2Output

GND

S
hu

nt

Q
1

B
D

13
5

3

2 1

G
N

D

U
8

IN
A

33
3x

xD
G

K
+

3

R
g

1

R
g

8

-
2

V+
7

V-
4

Ref
5

6

G
N

D U
5

IN
A

33
3x

xD
G

K
+

3

R
g

1

R
g

8

-
2

V+
7

V-
4

Ref
5

6

G
N

D

C
4

0.
1u

F

P
W

R
_F

LA
G

G
N

D
U

10
IN

A
33

3x
xD

G
K

+
3

R
g

1

R
g

8

-
2

V+
7

V-
4

Ref
5

6

U
9

IN
A

33
3x

xD
G

K
+

3

R
g

1

R
g

8

-
2

V+
7

V-
4

Ref
5

6

G
N

D

G
N

D

G
N

D

G
N

D

P
W

R
_F

LA
G

K
6

A
Q

V
25

4R

12

654

P
W

R
_F

LA
G

J4 C
on

n_
01

x0
3_

S
oc

ke
t

1 2 3

J5 C
on

n_
01

x0
3_

S
oc

ke
t

1 2 3

P
W

R
_F

LA
G

Figure 16: Whole schematic of PCB

25

All components used in this project, including microcontrollers, transistors, amplifiers, and passive

elements, were either provided by the Özyeğin University. The PCB itself was manufactured within

the university’s electronics laboratory, ensuring full control over the design and fabrication process.

2.5 Schematic and Pcb

Figure 17 below shows the general view of the PCB designed for a BMS. This board is created to

monitor and control a 4-cell li-ion battery pack connected in series. The design is based on the

STM32F407G-DISC1 development board, which is used as the main controller. The PCB includes

all necessary components for voltage monitoring, current measurement, temperature sensing, and

battery protection. The PCB has a double-layer structure. A star-grounding method is used to

keep analog and digital grounds separated, which improves measurement accuracy. The board also

includes all necessary header connections for the STM32F407G-DISC1. It is suitable for both lab

testing and real-world applications, allowing safe and efficient monitoring and control of the battery

pack.

26

Figure 17: General look of PCB design.

For current measurement, the circuit uses an INA333 precision differential amplifieras shown in

the figure 19 and 18 below. It reads the voltage drop across a shunt resistor and sends the amplified

signal to the microcontroller’s ADC (Analog-to-Digital Converter). The voltage of each battery

cell is measured using voltage divider circuits, which reduce the cell voltage to a safe level for ADC

inputs.

G = 1 +

(
100 kΩ
Rg

)
(1)

27

Figure 18: INA333 Diff. Amplifier connections (Rg = 10M).

Figure 19: Amplification at the shunt resistor (Rg = 200).

NTC thermistors are used to monitor the temperature of each cell. In figure 20, the connections are

demonstrated. These sensors help detect overheating by measuring resistance changes depending

on temperature. The temperature values are also sent to the microcontroller via ADC pins.

28

Figure 20: Mounting Holes and Thermistor connections at the schematic.

Two types of transistors are used in the circuit: AQV252G and BD135. AQV252G is a solid-state

relay, which provides electrical isolation and allows safe switching in high-voltage sections. Every

AQV252G ensures charging and discharging balance that works together with the algorithm of the

system. It controls the voltage balance between capacitors and battery cells. Figure 6 shows the

schematic of the system. In figure 2 the BD135 NPN transistor is used as a low-side switch to

enhance system safety. It controls the connection between the system’s main negative line and

ground, allowing disconnection in fault conditions such as overcurrent or overheating. The base is

driven through an 820 ohm resistor by a MOSFET output, enabling or disabling the ground path.

This setup provides a reliable hardware-based method to isolate the battery when needed These

transistors are controlled by the microcontroller’s digital output pins.

29

Figure 21 shows the battery cell connections of the circuit.

Figure 21: Battery cell connections.

After the cells are connected to PCB they directly connected to voltage divider with specific

configurations as shown in the figure 22.

Figure 22: Voltage divider configurations

30

Figure 23 shows the 3D front look of the PCB in Kicad.

Figure 23: 3D front look of the PCB.

31

Figure 24 shows the 3D back look of the PCB in Kicad.

Figure 24: 3D back look of the PCB.

In the PCB design we had to use both sides effectively because the PCB was planned to be manufac-

tured in the university laboratory, and because of that PCB sizing had to be below some constraints.

Also, the signals and power paths are located in different sides of the PCB, with that configuration,

it is easier to follow up the signals or power pathways.

32

Figure 25 shows the real world look of the PCB without any component.

Figure 25: Printed PCB without any component.

Following the completion of the PCB manufacturing process, the board was visually inspected

on both the front and back sides, as shown in Figures 26 and 27, respectively. The layout corre-

sponds precisely to the finalized schematic design, ensuring accurate placement and routing of all

components.

All component footprints, except for those used for resistors, were downloaded and implemented

using the SnapMagic online library [6]. This ensured standard-compliant pad sizing, pin configu-

ration accuracy, and mechanical compatibility across all major components, thereby reducing the

likelihood of soldering and placement errors during assembly. The resistor footprints were created

manually in accordance with the component dimensions available in the university’s electronics

laboratory.

All components used on the PCB, aside from those that were specifically ordered for the project,

33

were supplied directly from the Özyeğin University Electronics Laboratory inventory. This en-

sured practical compatibility with the available stock and supported efficient and cost-effective

development.

Figure 26: Front side of the finished PCB.

34

Figure 27: Back side of the finished PCB.

The algorithm was tested in Simulink and then adapted to the STM board. The code can be seen

which is loaded onto the STM board in the appendix section.

35

3 RESULTS AND DISCUSSIONS

This section shows what we found from making and testing the BMS early model.

3.1 Results

A new Battery Management System was successfully created in MATLAB Simulink. This system

uses capacitor-based active balancing, which works with a smart algorithm to balance the cells. An

important feature of this BMS is that its parameters can be customized by the user in the required

and desired way.

Key achievements and characteristics of the developed BMS are:

• Real-Time Monitoring and Safety: Temperature, voltage, and current are read in real-time.

This allows for continuous safety checks and control of a dedicated safety switch transistor.

• Custom Balancing Algorithm: The most significant difference is the custom balancing

control algorithm. This algorithm allows for the balancing of cells that may even have

different sizes or capacities. This feature greatly increases the scalability of the system and the

possibilities for customization.

• Balancing Performance: Successful cell balancing was observed during simulations in both

charging and discharging states of the battery pack. The effectiveness of the algorithm

in reducing voltage differences between cells was confirmed, as detailed in the analysis of

simulation data (refer to Tables 1-4 and the accompanying analysis in Section 2.3.9).

36

3.2 Discussion

The developed BMS prototype highlights several advantages, mostly in terms of flexibility and

adaptability due to its custom control algorithm. Offers a significant improvement over many

existing solutions. Furthermore, the algorithm’s capability to handle cells of potentially different

characteristics enhances its practical applicability.

Real-time monitoring of critical parameters (voltage, current, temperature) is functional and pro-

vides the necessary data for both the balancing algorithm and the safety cut-off mechanisms. The

successful balancing observed in simulation data for both charging and discharging scenarios vali-

dates the core logic of the custom algorithm.

However, it is important to note the current status of the system. While the core functionalities

are established and have been validated through simulation, the system is not yet in a perfect or

production-ready condition. The primary limitation at this stage is that the physical hardware setup

has not been subjected to comprehensive long-term testing. These extended tests are crucial for

evaluating the system’s stability, reliability, and the durability of components under continuous

operation. Such testing was not completed due to time constraints within the project period.

Therefore, while simulation results are promising, the long-term real-world performance of the

physical prototype remains to be fully characterized.

37

4 CONCLUSIONS AND FUTURE WORKS

A new Battery Management System featuring capacitor-based active cell balancing was successfully

developed and validated through simulation. The core of this BMS is a smart, customizable control

algorithm that effectively balances cells, allowing users to adjust parameters as needed.

The system incorporates real-time monitoring of essential parameters such as temperature, voltage,

and current, which enables safety protocols, including the control of a safety switch transistor. The

custom balancing algorithm is a significant innovation, offering the potential to balance cells of

varying sizes or capacities, thereby enhancing system scalability and customization. Simulation

results have demonstrated successful balancing performance in both charging and discharging states.

4.1 Future Works

While the current BMS prototype has achieved its primary design goals, several areas for future

work have been identified to further enhance its performance and robustness:

• Comprehensive Hardware Testing: The most immediate future work involves conducting

long-term tests on the physical hardware setup. This is important to evaluate its stability,

reliability under continuous operation, and the durability of the components, which could not

be fully completed due to project time constraints.

• Optimization of Balancing Speed: The current balancing algorithm focuses on one cell pair

at a time. A significant improvement planned for future work is to modify the algorithm to

allow for parallel balancing operations. It is anticipated that running the balancing logic for two

or more cell pairs simultaneously could hugely increase the overall speed of cell equalization.

• User Interface Development: For enhanced usability, a simple user interface could be

developed to display key battery parameters and allow for easier adjustment of customizable

algorithm settings.

• Expansion for More Cells: While currently designed for up to four cells, the architectural

principles could be extended and tested for battery packs with a larger number of cells.

38

Addressing these areas will contribute to the development of a more mature and field-ready BMS.

39

REFERENCES

[1] Trudyo, “Bd135 transistör npn to126,” Web Page, Jun. 2025, [Accessed: 2025-06-04]. Avail-

able: https://trudyo.com/magaza/bd135-transistor-npn-to126/.

[2] Mouser Electronics Turkey and Texas Instruments, “Ina333 düşük güç tüketimli, hassas en-

strümantasyon amplifikatörleri,” Web Page, Jun. 2025, [Accessed: 2025-06-04]. Available:

https://www.mouser.com.tr/new/texas-instruments/ti-ina333-instrumentation-amplifiers/.

[3] E-Komponent, “Aqv252g solid state dip6,” Web Page, Jun. 2025, [Accessed: 2025-06-04].

Available: https://www.e-komponent.com/solid-state-dpst-no-6-dip-aqv252g.

[4] RobotShop, “Temperature sensor tmp36,” Web Page, Jun. 2025, [Accessed: 2025-06-04].

Available: https://ca.robotshop.com/products/temperature-sensor-tmp36.

[5] MathWorks, “Balance battery cells with switched capacitor method,” Web Page, [Accessed:

2025-04-21]. [Online]. Available: https://www.mathworks.com/help/simscape-battery/ug/

balance-battery-cells-with-switched-capacitor-method.html

[6] SnapEDA, “Snapeda - electronics design library (pcb footprints and schematic symbols),” Web

Page, Jun. 2025, [Accessed: 2025-06-04]. Available: https://www.snapeda.com/.

You may find more about citing different sources (books, journals, articles, projects, dissertations,

etc.) using the IEEE style from this link: IEEE Citation Style Guide (ijssst.info).

40

https://trudyo.com/magaza/bd135-transistor-npn-to126/
https://www.mouser.com.tr/new/texas-instruments/ti-ina333-instrumentation-amplifiers/
https://www.e-komponent.com/solid-state-dpst-no-6-dip-aqv252g
https://ca.robotshop.com/products/temperature-sensor-tmp36
https://www.mathworks.com/help/simscape-battery/ug/balance-battery-cells-with-switched-capacitor-method.html
https://www.mathworks.com/help/simscape-battery/ug/balance-battery-cells-with-switched-capacitor-method.html
https://www.snapeda.com/
https://www.ijssst.info/info/IEEE-Citation-StyleGuide.pdf

APPENDICES

Appendix-A Figure 28 is the MATLAB/Simulink simulation of the BMS with active balancing

system.

41

Fi
gu

re
28

:S
im

ul
at

io
n

O
ve

rv
ie

w

42

Appendix-B List 8 The code inside of the STM board.

1

2 /* USER CODE END Header */

3 /* Includes --*/

4 #include "main.h"

5 // #include "usb_host.h"

6

7 /* Private includes --*/

8 /* USER CODE BEGIN Includes */

9 #include <stdio.h>

10 #include <math.h>

11 #include <stdarg.h>

12 /* USER CODE END Includes */

13

14 /* Private typedef ---*/

15 /* USER CODE BEGIN PTD */

16 /* USER CODE END PTD */

17

18 /* Private define --*/

19 /* USER CODE BEGIN PD */

20 #define ADC_CHANNEL_COUNT 10

21 /* USER CODE END PD */

22

23 /* Private macro ---*/

24 /* USER CODE BEGIN PM */

25 /* USER CODE END PM */

26

27 /* Private variables ---*/

28 ADC_HandleTypeDef hadc1;

29 DMA_HandleTypeDef hdma_adc1;

30

31 // I2C_HandleTypeDef hi2c1;

32 /* USER CODE BEGIN PV */

33 // ADC DMA Buffer

34 uint16_t adc_values_raw[ADC_CHANNEL_COUNT];

35

36 // Reconstructed voltages and readings

37 float v_cell1_actual , v_cell2_actual , v_cell3_actual , v_cell4_actual;

38 float cap1_voltage , cap2_voltage , cap3_voltage; // Read but not used by current

43

balancing algorithm

39 float pack_current;

40 float temp_sensor1_C , temp_sensor2_C;

41

42 // Control Algorithm Persistent State

43 static int balancingCap = 0;

44 static int pulsesRemaining = 0;

45 static int toggleState = 0;

46 static const int N_val = 10;

47

48 // Constants for the balancing algorithm

49 const float THRESHOLD_TO_PICK_NEW_PAIR = 0.010f; // 10mV

50 const float TARGET_DV_FOR_ACTIVE_PAIR = 0.010f; // 10mV

51

52 // ADC & System Constants

53 const float ADC_VREF = 3.3f; // Assuming VDDA is 3.3V

54 const float ADC_MAX_VALUE = 4095.0f; // For 12-bit ADC (2^12 - 1)

55

56 // Corrected Voltage Divider Gains (R2=100k for all, R1 values)

57 const float GAIN_SUM_C1 = 1.47f; // (47k+100k)/100k for VD1 (PA3)

58 const float GAIN_SUM_C1_C2 = 2.80f; // (180k+100k)/100k for VD2 (PA1)

59 const float GAIN_SUM_C1_C2_C3 = 4.30f; // (330k+100k)/100k for VD3 (PA7)

60 const float GAIN_SUM_C1_C2_C3_C4 = 5.70f; // (470k+100k)/100k for VD4 (PA5)

61

62 // Shunt related (PA0)

63 const float SHUNT_VOLTAGE_TO_CURRENT_DIVISOR = 50.0f;

64 // TMP36GZ Temperature Sensor Constants

65 const float TMP36_OFFSET_V = 0.5f; // 0.5V at 0 C for TMP36

66 const float TMP36_SCALE_FACTOR_V_PER_C = 0.01f; // 10mV per C for TMP36

67

68 // Safety Limits

69 const float MAX_CELL_VOLTAGE = 4.2f;

70 const float MIN_CELL_VOLTAGE = 2.8f;

71 const float MAX_TEMPERATURE = 55.0f; // Celsius

72 const float MIN_TEMPERATURE = -10.0f; // Celsius

73 // const float MAX_CURRENT_CHARGE = 20.0f; // Amps

74 // const float MAX_CURRENT_DISCHARGE = 50.0f; // Amps

75 uint8_t main_bjt_switch_on = 0; // 0 = OFF (Open Circuit), 1 = ON (Connected)

76 char printf_buffer[128]; // Buffer for SWV printf

44

77 /* USER CODE END PV */

78

79 /* Private function prototypes ---*/

80 void SystemClock_Config(void);

81 static void MX_GPIO_Init(void);

82 static void MX_DMA_Init(void);

83 // static void MX_I2C1_Init(void);

84 static void MX_ADC1_Init(void);

85 // void MX_USB_HOST_Process(void);

86 /* USER CODE BEGIN PFP */

87 void ControlAlgorithm_C_Revised(float v1_div, float v2_div, float v3_div, float v4_div,

88 uint8_t* S_out);

89 float ConvertTMP36ADCtoTemperature(uint16_t adc_raw_sensor);

90 void SWV_Printf(const char *fmt, ...);

91 /* USER CODE END PFP */

92

93 /* Private user code ---*/

94 /* USER CODE BEGIN 0 */

95 /* USER CODE END 0 */

96

97 /**

98 * @brief The application entry point.

99 * @retval int

100 */

101 int main(void)

102 {

103 /* USER CODE BEGIN 1 */

104 /* USER CODE END 1 */

105

106 /* MCU Configuration --*/

107 HAL_Init();

108 /* USER CODE BEGIN Init */

109 /* USER CODE END Init */

110 SystemClock_Config();

111 /* USER CODE BEGIN SysInit */

112 /* USER CODE END SysInit */

113

114 /* Initialize all configured peripherals */

115 MX_GPIO_Init();

45

116 MX_DMA_Init();

117 // MX_I2C1_Init();

118 // MX_USB_HOST_Init();

119 MX_ADC1_Init();

120 /* USER CODE BEGIN 2 */

121 // Start ADC with DMA

122 if (HAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_values_raw , ADC_CHANNEL_COUNT) != HAL_OK

) {

123 Error_Handler(); // ADC DMA Start Error

124 }

125

126 // Initial state: Main BJT Switch OFF (safer) until first check

127 HAL_GPIO_WritePin(Mosfet_GPIO_Port , Mosfet_Pin , GPIO_PIN_RESET); // PC5 - Main BJT

Switch OFF

128 main_bjt_switch_on = 0;

129 /* USER CODE END 2 */

130

131 /* Infinite loop */

132 /* USER CODE BEGIN WHILE */

133 while (1)

134 {

135 /* USER CODE END WHILE */

136 // MX_USB_HOST_Process();

137

138 /* USER CODE BEGIN 3 */

139 // ADC Value Order (Rank 1 to 10 -> index 0 to 9)

140 // Based on your User Labels and typical INx mapping:

141 // adc_values_raw[0]: shunt (PA0 -> IN0)

142 // adc_values_raw[1]: VD2 (PA1 -> IN1 -> for Cell1+Cell2 sum)

143 // adc_values_raw[2]: C3_Read (PA2 -> IN2 -> Cap3 voltage)

144 // adc_values_raw[3]: VD1 (PA3 -> IN3 -> for Cell1 sum)

145 // adc_values_raw[4]: VD4 (PA5 -> IN5 -> for Cell1+2+3+4 sum)

146 // adc_values_raw[5]: VD3 (PA7 -> IN7 -> for Cell1+2+3 sum)

147 // adc_values_raw[6]: C2_Read (PC0 -> IN10 -> Cap2 voltage)

148 // adc_values_raw[7]: TMP1 (PC1 -> IN11 -> Temp Sensor 1)

149 // adc_values_raw[8]: C1_Read (PC2 -> IN12 -> Cap1 voltage)

150 // adc_values_raw[9]: TMP2 (PC4 -> IN14 -> Temp Sensor 2)

151

152 // Convert raw ADC values from DMA buffer to voltages

46

153 float shunt_adc_voltage = (adc_values_raw[0] / ADC_MAX_VALUE) * ADC_VREF;

154 float v2_raw_div_out = (adc_values_raw[1] / ADC_MAX_VALUE) * ADC_VREF; //

Input for Cell1+Cell2 sum

155 cap3_voltage = (adc_values_raw[2] / ADC_MAX_VALUE) * ADC_VREF; // Cap3

voltage

156 float v1_raw_div_out = (adc_values_raw[3] / ADC_MAX_VALUE) * ADC_VREF; //

Input for Cell1 sum

157 float v4_raw_div_out = (adc_values_raw[4] / ADC_MAX_VALUE) * ADC_VREF; //

Input for Cell1+2+3+4 sum

158 float v3_raw_div_out = (adc_values_raw[5] / ADC_MAX_VALUE) * ADC_VREF; //

Input for Cell1+2+3 sum

159 cap2_voltage = (adc_values_raw[6] / ADC_MAX_VALUE) * ADC_VREF; // Cap2

voltage

160 uint16_t tmp1_adc_raw = adc_values_raw[7]; // TMP1

raw ADC

161 cap1_voltage = (adc_values_raw[8] / ADC_MAX_VALUE) * ADC_VREF; // Cap1

voltage

162 uint16_t tmp2_adc_raw = adc_values_raw[9]; // TMP2

raw ADC

163

164 // Reconstruct ACTUAL individual cell voltages for safety checks

165 float sum_c1_calc = GAIN_SUM_C1 * v1_raw_div_out;

166 float sum_c1_c2_calc = GAIN_SUM_C1_C2 * v2_raw_div_out;

167 float sum_c1_c2_c3_calc = GAIN_SUM_C1_C2_C3 * v3_raw_div_out;

168 float sum_c1_c2_c3_c4_calc = GAIN_SUM_C1_C2_C3_C4 * v4_raw_div_out;

169

170 v_cell1_actual = sum_c1_calc;

171 v_cell2_actual = sum_c1_c2_calc - sum_c1_calc;

172 v_cell3_actual = sum_c1_c2_c3_calc - sum_c1_c2_calc;

173 v_cell4_actual = sum_c1_c2_c3_c4_calc - sum_c1_c2_c3_calc;

174

175 // Calculate pack current

176 pack_current = shunt_adc_voltage / SHUNT_VOLTAGE_TO_CURRENT_DIVISOR;

177

178 // Convert TMP36 readings to temperature

179 temp_sensor1_C = ConvertTMP36ADCtoTemperature(tmp1_adc_raw);

180 temp_sensor2_C = ConvertTMP36ADCtoTemperature(tmp2_adc_raw);

181

182 // --- Main BJT Switch (PC5 - User Label "Mosfet") Safety Control ---

47

183 uint8_t open_main_switch_flag = 0;

184 if (v_cell1_actual > MAX_CELL_VOLTAGE || v_cell2_actual > MAX_CELL_VOLTAGE ||

185 v_cell3_actual > MAX_CELL_VOLTAGE || v_cell4_actual > MAX_CELL_VOLTAGE ||

186 v_cell1_actual < MIN_CELL_VOLTAGE || v_cell2_actual < MIN_CELL_VOLTAGE ||

187 v_cell3_actual < MIN_CELL_VOLTAGE || v_cell4_actual < MIN_CELL_VOLTAGE) {

188 open_main_switch_flag = 1; // Cell voltage out of safe range

189 }

190 if (temp_sensor1_C > MAX_TEMPERATURE || temp_sensor2_C > MAX_TEMPERATURE ||

191 temp_sensor1_C < MIN_TEMPERATURE || temp_sensor2_C < MIN_TEMPERATURE) {

192 open_main_switch_flag = 1; // Temperature out of safe range

193 }

194 // Add other safety checks here but not quite possible (maybe pack_current limits

etc. idk) and set open_main_switch_flag = 1 if fault

195

196 if (open_main_switch_flag) {

197 if (main_bjt_switch_on) { // If it was ON, turn it OFF

198 HAL_GPIO_WritePin(Mosfet_GPIO_Port , Mosfet_Pin , GPIO_PIN_RESET);

199 main_bjt_switch_on = 0;

200 }

201 } else { // No fault condition

202 if (!main_bjt_switch_on) { // If it was OFF, turn it ON

203 HAL_GPIO_WritePin(Mosfet_GPIO_Port , Mosfet_Pin , GPIO_PIN_SET);

204 main_bjt_switch_on = 1;

205 }

206 }

207

208 // --- Balancing Logic ---

209 uint8_t S_switches_cmd[8] = {0}; // Initialize all switch commands to OFF

210 if (main_bjt_switch_on) { // Only perform balancing if the main BJT switch is ON (

pack is connected)

211 // Call balancing algorithm with RAW divider outputs (v1_raw_div_out , etc.)

212 ControlAlgorithm_C_Revised(v1_raw_div_out , v2_raw_div_out , v3_raw_div_out ,

v4_raw_div_out ,

213 S_switches_cmd);

214 } else {

215 // If main BJT switch is OFF, ensure balancing algorithm state is reset

216 balancingCap = 0;

217 pulsesRemaining = 0;

218 toggleState = 0;

48

219 // S_switches_cmd remains all zeros (all balancing switches OFF)

220 }

221

222 // Apply switch commands (S1-S8) using User Labels from main.h

223 HAL_GPIO_WritePin(S1_GPIO_Port , S1_Pin, (GPIO_PinState)S_switches_cmd[0]);

224 HAL_GPIO_WritePin(S2_GPIO_Port , S2_Pin, (GPIO_PinState)S_switches_cmd[1]);

225 HAL_GPIO_WritePin(S3_GPIO_Port , S3_Pin, (GPIO_PinState)S_switches_cmd[2]);

226 HAL_GPIO_WritePin(S4_GPIO_Port , S4_Pin, (GPIO_PinState)S_switches_cmd[3]);

227 HAL_GPIO_WritePin(S5_GPIO_Port , S5_Pin, (GPIO_PinState)S_switches_cmd[4]);

228 HAL_GPIO_WritePin(S6_GPIO_Port , S6_Pin, (GPIO_PinState)S_switches_cmd[5]);

229 HAL_GPIO_WritePin(S7_GPIO_Port , S7_Pin, (GPIO_PinState)S_switches_cmd[6]);

230 HAL_GPIO_WritePin(S8_GPIO_Port , S8_Pin, (GPIO_PinState)S_switches_cmd[7]);

231

232 // SWV Debug Print (for debuggggg)

233 static uint32_t last_print_time = 0;

234 if (HAL_GetTick() - last_print_time >= 1000) { // Print every 1 second

235 SWV_Printf("V:%.2f,%.2f,%.2f,%.2f C:%.2f T:%.1f,%.1f BJT:%d BAL:%d PLS:%d\r\n",

236 v_cell1_actual , v_cell2_actual , v_cell3_actual , v_cell4_actual ,

237 pack_current , temp_sensor1_C , temp_sensor2_C ,

238 main_bjt_switch_on , balancingCap , pulsesRemaining);

239 last_print_time = HAL_GetTick();

240 }

241

242 HAL_Delay(1); // Control loop delay (1ms)

243 }

244 /* USER CODE END 3 */

245 }

246

247 /**

248 * @brief System Clock Configuration

249 * @retval None

250 */

251 void SystemClock_Config(void)

252 {

253 RCC_OscInitTypeDef RCC_OscInitStruct = {0};

254 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

255

256 /** Configure the main internal regulator output voltage

257 */

49

258 __HAL_RCC_PWR_CLK_ENABLE();

259 __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

260

261 /** Initializes the RCC Oscillators according to the specified parameters

262 * in the RCC_OscInitTypeDef structure.

263 */

264 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;

265 RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS; // Or RCC_HSE_ON if using a crystal

directly

266 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

267 RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;

268 RCC_OscInitStruct.PLL.PLLM = 8; // Value for 8MHz HSE on STLink MCO or external 8MHz

crystal

269 RCC_OscInitStruct.PLL.PLLN = 336;

270 RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;

271 RCC_OscInitStruct.PLL.PLLQ = 7; // For USB OTG FS

272 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

273 {

274 Error_Handler();

275 }

276

277 /** Initializes the CPU, AHB and APB buses clocks

278 */

279 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

280 |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

281 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

282 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

283 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;

284 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

285

286 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct , FLASH_LATENCY_5) != HAL_OK)

287 {

288 Error_Handler();

289 }

290 }

291

292 /**

293 * @brief ADC1 Initialization Function

294 * @param None

50

295 * @retval None

296 */

297 static void MX_ADC1_Init(void)

298 {

299 /* USER CODE BEGIN ADC1_Init 0 */

300 /* USER CODE END ADC1_Init 0 */

301 ADC_ChannelConfTypeDef sConfig = {0};

302 /* USER CODE BEGIN ADC1_Init 1 */

303 /* USER CODE END ADC1_Init 1 */

304

305

306 hadc1.Instance = ADC1;

307 hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;

308 hadc1.Init.Resolution = ADC_RESOLUTION_12B;

309 hadc1.Init.ScanConvMode = ENABLE;

310 hadc1.Init.ContinuousConvMode = ENABLE;

311 hadc1.Init.DiscontinuousConvMode = DISABLE;

312 hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;

313 hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;

314 hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;

315 hadc1.Init.NbrOfConversion = ADC_CHANNEL_COUNT; // Use the define

316 hadc1.Init.DMAContinuousRequests = ENABLE;

317 hadc1.Init.EOCSelection = ADC_EOC_SEQ_CONV;

318 if (HAL_ADC_Init(&hadc1) != HAL_OK)

319 {

320 Error_Handler();

321 }

322

323

324 sConfig.SamplingTime = ADC_SAMPLETIME_28CYCLES;

325

326 sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = 1; // shunt (PA0)

327 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); }

328 sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = 2; // VD2 (PA1)

329 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); }

330 sConfig.Channel = ADC_CHANNEL_2; sConfig.Rank = 3; // C3_Read (PA2)

331 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); }

332 sConfig.Channel = ADC_CHANNEL_3; sConfig.Rank = 4; // VD1 (PA3)

333 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); }

51

334 sConfig.Channel = ADC_CHANNEL_5; sConfig.Rank = 5; // VD4 (PA5)

335 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); }

336 sConfig.Channel = ADC_CHANNEL_7; sConfig.Rank = 6; // VD3 (PA7)

337 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); }

338 sConfig.Channel = ADC_CHANNEL_10; sConfig.Rank = 7; // C2_Read (PC0)

339 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); }

340 sConfig.Channel = ADC_CHANNEL_11; sConfig.Rank = 8; // TMP1 (PC1)

341 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); }

342 sConfig.Channel = ADC_CHANNEL_12; sConfig.Rank = 9; // C1_Read (PC2)

343 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); }

344 sConfig.Channel = ADC_CHANNEL_14; sConfig.Rank = 10; // TMP2 (PC4)

345 if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); }

346 /* USER CODE BEGIN ADC1_Init 2 */

347 /* USER CODE END ADC1_Init 2 */

348 }

349

350 /**

351 * @brief I2C1 Initialization Function

352 * @param None

353 * @retval None

354 */

355 // static void MX_I2C1_Init(void)

356 // {

357 // /* USER CODE BEGIN I2C1_Init 0 */

358 // /* USER CODE END I2C1_Init 0 */

359 // /* USER CODE BEGIN I2C1_Init 1 */

360 // /* USER CODE END I2C1_Init 1 */

361 // // hi2c1.Instance = I2C1;

362 // /* USER CODE BEGIN I2C1_Init 2 */

363 // /* USER CODE END I2C1_Init 2 */

364 // }

365

366 /**

367 * Enable DMA controller clock

368 */

369 static void MX_DMA_Init(void)

370 {

371 /* DMA controller clock enable */

372 __HAL_RCC_DMA2_CLK_ENABLE();

52

373

374 /* DMA interrupt init */

375 /* DMA2_Stream0_IRQn interrupt configuration */

376 HAL_NVIC_SetPriority(DMA2_Stream0_IRQn , 0, 0);

377 HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);

378 }

379

380 /**

381 * @brief GPIO Initialization Function

382 * @param None

383 * @retval None

384 */

385 static void MX_GPIO_Init(void)

386 {

387 GPIO_InitTypeDef GPIO_InitStruct = {0};

388 /* USER CODE BEGIN MX_GPIO_Init_1 */

389 /* USER CODE END MX_GPIO_Init_1 */

390

391 /* GPIO Ports Clock Enable */

392 __HAL_RCC_GPIOE_CLK_ENABLE();

393 __HAL_RCC_GPIOC_CLK_ENABLE();

394 __HAL_RCC_GPIOH_CLK_ENABLE();

395 __HAL_RCC_GPIOA_CLK_ENABLE();

396 __HAL_RCC_GPIOB_CLK_ENABLE();

397 __HAL_RCC_GPIOD_CLK_ENABLE();

398

399 /*Configure GPIO pin Output Level for all BMS outputs to LOW */

400 HAL_GPIO_WritePin(S1_GPIO_Port , S1_Pin, GPIO_PIN_RESET); // PA6

401 HAL_GPIO_WritePin(S2_GPIO_Port , S2_Pin, GPIO_PIN_RESET); // PA4

402 HAL_GPIO_WritePin(S3_GPIO_Port , S3_Pin, GPIO_PIN_RESET); // PD0

403 HAL_GPIO_WritePin(S4_GPIO_Port , S4_Pin, GPIO_PIN_RESET); // PD2

404 HAL_GPIO_WritePin(S5_GPIO_Port , S5_Pin, GPIO_PIN_RESET); // PE3

405 HAL_GPIO_WritePin(S6_GPIO_Port , S6_Pin, GPIO_PIN_RESET); // PE5

406 HAL_GPIO_WritePin(S7_GPIO_Port , S7_Pin, GPIO_PIN_RESET); // PD8

407 HAL_GPIO_WritePin(S8_GPIO_Port , S8_Pin, GPIO_PIN_RESET); // PD15

408 HAL_GPIO_WritePin(Mosfet_GPIO_Port , Mosfet_Pin , GPIO_PIN_RESET); // PC5

409

410 /*Configure Output Pins */

411 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

53

412 GPIO_InitStruct.Pull = GPIO_NOPULL;

413 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

414

415 GPIO_InitStruct.Pin = S1_Pin; HAL_GPIO_Init(S1_GPIO_Port , &GPIO_InitStruct);

416 GPIO_InitStruct.Pin = S2_Pin; HAL_GPIO_Init(S2_GPIO_Port , &GPIO_InitStruct);

417 GPIO_InitStruct.Pin = S3_Pin; HAL_GPIO_Init(S3_GPIO_Port , &GPIO_InitStruct);

418 GPIO_InitStruct.Pin = S4_Pin; HAL_GPIO_Init(S4_GPIO_Port , &GPIO_InitStruct);

419 GPIO_InitStruct.Pin = S5_Pin; HAL_GPIO_Init(S5_GPIO_Port , &GPIO_InitStruct);

420 GPIO_InitStruct.Pin = S6_Pin; HAL_GPIO_Init(S6_GPIO_Port , &GPIO_InitStruct);

421 GPIO_InitStruct.Pin = S7_Pin; HAL_GPIO_Init(S7_GPIO_Port , &GPIO_InitStruct);

422 GPIO_InitStruct.Pin = S8_Pin; HAL_GPIO_Init(S8_GPIO_Port , &GPIO_InitStruct);

423 GPIO_InitStruct.Pin = Mosfet_Pin; HAL_GPIO_Init(Mosfet_GPIO_Port , &GPIO_InitStruct);

424

425 // GPIO_InitStruct.Pin = BOOT1_Pin;

426 // GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

427 // GPIO_InitStruct.Pull = GPIO_NOPULL;

428 // HAL_GPIO_Init(BOOT1_GPIO_Port , &GPIO_InitStruct);

429

430 /* USER CODE BEGIN MX_GPIO_Init_2 */

431 /* USER CODE END MX_GPIO_Init_2 */

432 }

433

434 /* USER CODE BEGIN 4 */

435 void ControlAlgorithm_C_Revised(float v1_div, float v2_div, float v3_div, float v4_div,

436 uint8_t* S_out) {

437 // --- 1. Reconstruct the *actual* cell voltages ---

438 float sum1_eff = GAIN_SUM_C1 * v1_div;

439 float sum12_eff = GAIN_SUM_C1_C2 * v2_div;

440 float sum123_eff = GAIN_SUM_C1_C2_C3 * v3_div;

441 float sum1234_eff = GAIN_SUM_C1_C2_C3_C4 * v4_div;

442

443 float Vcell1 = sum1_eff;

444 float Vcell2 = sum12_eff - sum1_eff;

445 float Vcell3 = sum123_eff - sum12_eff;

446 float Vcell4 = sum1234_eff - sum123_eff;

447

448 // --- 2. Compute a d j a c e n t cell differences ---

449 float dV12 = Vcell2 - Vcell1;

450 float dV23 = Vcell3 - Vcell2;

54

451 float dV34 = Vcell4 - Vcell3;

452 float abs_dV12 = fabsf(dV12);

453 float abs_dV23 = fabsf(dV23);

454 float abs_dV34 = fabsf(dV34);

455

456 // --- 3. Decision Logic ---

457 if (balancingCap != 0) {

458 float current_active_dV_abs = 0.0f;

459 if (balancingCap == 1) current_active_dV_abs = abs_dV12;

460 else if (balancingCap == 2) current_active_dV_abs = abs_dV23;

461 else if (balancingCap == 3) current_active_dV_abs = abs_dV34;

462

463 if (current_active_dV_abs <= TARGET_DV_FOR_ACTIVE_PAIR) {

464 balancingCap = 0; pulsesRemaining = 0; toggleState = 0;

465 } else {

466 if (pulsesRemaining == 0) {

467 pulsesRemaining = 2 * N_val;

468 }

469 }

470 }

471

472 if (balancingCap == 0) {

473 float abs_dVs[] = {abs_dV12, abs_dV23, abs_dV34}; // Array of absolute

differences

474 float maxDV_overall = 0.0f; // Max difference found so far

475 int new_balancing_cap_idx = 0; // Index of the cap to balance (1, 2, or 3)

476

477 // Find the pair with the largest absolute difference that is also above the

threshold

478 for(int i=0; i<3; ++i) {

479 if(abs_dVs[i] > maxDV_overall && abs_dVs[i] > THRESHOLD_TO_PICK_NEW_PAIR) {

480 maxDV_overall = abs_dVs[i];

481 new_balancing_cap_idx = i + 1; // +1 because array is 0-indexed,

balancingCap is 1,2,3

482 }

483 }

484

485 if (new_balancing_cap_idx != 0) { // If a valid cap was found

486 balancingCap = new_balancing_cap_idx;

55

487 pulsesRemaining = 2 * N_val;

488 toggleState = 0;

489 } else { // No pair needs balancing

490 balancingCap = 0; pulsesRemaining = 0; toggleState = 0;

491 }

492 }

493

494 // --- 4. If a cap is active, execute one h a l f stroke ---

495 for (int i = 0; i < 8; ++i) S_out[i] = 0; // Initialize all switch commands to OFF

496

497 if (balancingCap != 0 && pulsesRemaining > 0) {

498 if (balancingCap == 1) {

499 if (dV12 > 0) { if (toggleState == 0) { S_out[1] = 1; S_out[3] = 1; } else

{ S_out[0] = 1; S_out[2] = 1; } }

500 else { if (toggleState == 0) { S_out[0] = 1; S_out[2] = 1; } else { S_out

[1] = 1; S_out[3] = 1; } }

501 } else if (balancingCap == 2) {

502 if (dV23 > 0) { if (toggleState == 0) { S_out[3] = 1; S_out[5] = 1; } else

{ S_out[2] = 1; S_out[4] = 1; } }

503 else { if (toggleState == 0) { S_out[2] = 1; S_out[4] = 1; } else { S_out

[3] = 1; S_out[5] = 1; } }

504 } else if (balancingCap == 3) {

505 if (dV34 > 0) { if (toggleState == 0) { S_out[5] = 1; S_out[7] = 1; } else

{ S_out[4] = 1; S_out[6] = 1; } }

506 else { if (toggleState == 0) { S_out[4] = 1; S_out[6] = 1; } else { S_out

[5] = 1; S_out[7] = 1; } }

507 }

508 pulsesRemaining --;

509 toggleState = 1 - toggleState;

510 }

511

512 // --- 5. Enforce noshort rules ---

513 if (S_out[7] && S_out[5]) { S_out[6] = 0; S_out[4] = 0; }

514 if (S_out[6] && S_out[4]) { S_out[7] = 0; S_out[5] = 0; S_out[3] = 0; S_out[1] = 0;

}

515 if (S_out[5] && S_out[3]) { S_out[7]=0; S_out[6]=0; S_out[4]=0; S_out[2]=0; S_out

[1]=0; S_out[0]=0; }

516 if (S_out[4] && S_out[2]) { S_out[7]=0; S_out[6]=0; S_out[5]=0; S_out[3]=0; S_out

[1]=0; S_out[0]=0; }

56

517 if (S_out[3] && S_out[1]) { S_out[6]=0; S_out[4]=0; S_out[2]=0; S_out[0]=0; }

518 if (S_out[2] && S_out[0]) { S_out[3]=0; S_out[1]=0; }

519 }

520

521 // Temperature Conversion Function for TMP36GZ

522 float ConvertTMP36ADCtoTemperature(uint16_t adc_raw_sensor) {

523 float sensor_voltage = (adc_raw_sensor / ADC_MAX_VALUE) * ADC_VREF;

524 // Apply formula: Temp_C = (Voltage - 0.5) / 0.01

525 float temperature_C = (sensor_voltage - TMP36_OFFSET_V) /

TMP36_SCALE_FACTOR_V_PER_C;

526 return temperature_C;

527 }

528

529 // SWV Printf function

530 int _write(int file, char *ptr, int len) {

531 (void)file;

532 for (int i = 0; i < len; i++) {

533 ITM_SendChar((uint32_t)(*ptr++));

534 }

535 return len;

536 }

537

538 void SWV_Printf(const char *fmt, ...) {

539 va_list args;

540 va_start(args, fmt);

541 vsnprintf(printf_buffer , sizeof(printf_buffer), fmt, args);

542 va_end(args);

543

544 for (int i = 0; printf_buffer[i] != ’\0’ && i < (sizeof(printf_buffer) -1) ; i++) {

// Check buffer limit

545 ITM_SendChar((uint32_t)printf_buffer[i]);

546 }

547 }

548 /* USER CODE END 4 */

549

550 /**

551 * @brief This function is executed in case of error occurrence.

552 * @retval None

553 */

57

554 void Error_Handler(void)

555 {

556 /* USER CODE BEGIN Error_Handler_Debug */

557 __disable_irq();

558 // Example: Toggle an LED rapidly to indicate an error

559 // Assuming LD2 (often PA5, but you re-used PA5) or another available LED

560 // For instance , if you have an error LED on PB7 (User Label: Error_LED)

561 // HAL_GPIO_WritePin(Error_LED_GPIO_Port , Error_LED_Pin , GPIO_PIN_SET);

562 while (1)

563 {

564 // HAL_GPIO_TogglePin(Error_LED_GPIO_Port , Error_LED_Pin);

565 // HAL_Delay(100);

566 }

567 /* USER CODE END Error_Handler_Debug */

568 }

569

570 #ifdef USE_FULL_ASSERT

571 /**

572 * @brief Reports the name of the source file and the source line number

573 * where the assert_param error has occurred.

574 * @param file: pointer to the source file name

575 * @param line: assert_param error line source number

576 * @retval None

577 */

578 void assert_failed(uint8_t *file, uint32_t line)

579 {

580 /* USER CODE BEGIN 6 */

581 // SWV_Printf("Wrong parameters value: file %s on line %lu\r\n", (char*)file, line);

582 /* USER CODE END 6 */

583 }

584 #endif /* USE_FULL_ASSERT */

Listing 8: The code inside of the STM board.

58

	APPROVAL PAGE
	ABSTRACT
	ACKNOWLEDGMENT
	=LIST OF TABLES
	=LIST OF FIGURES
	LIST OF SYMBOLS AND ABBREVIATIONS
	=INTRODUCTION
	=METHODOLOGY
	=RESULTS AND DISCUSSIONS
	=CONCLUSIONS AND FUTURE WORKS
	REFERENCES
	References
	APPENDICES

